

600V/6A IGBT 三相全桥智能功率模块

应用:

- 冰箱压缩机
- 油烟机
- 风扇
- 空气净化器
- 洗碗机水泵

主要功能及额定参数:

- 600V/6A 三相逆变器
- 内置低损耗沟道栅-场截止型 IGBT
- 下臂 IGBT 发射极输出
- 内置自举二极管

特点:

- IGBT 驱动:增强型输入滤波,上下臂互锁,高速 600V 电平转换,电源欠压保护, 短路(过流)保护。
- 故障信号:对应于短路(过流)和 VP1 电源欠压故障。
- 输入接口:兼容 3.3V&5V 输入信号,高 电平有效。
- 温度检测: 负温度系数热敏电阻检测输出。

模块内部电路图

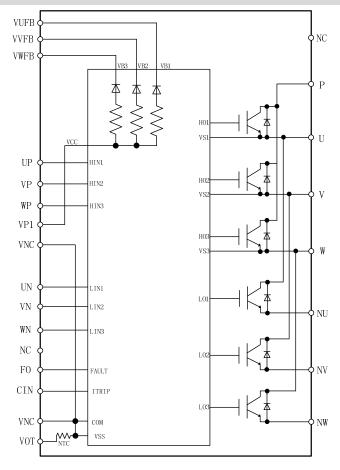


图 1: 内部电路图

管脚说明

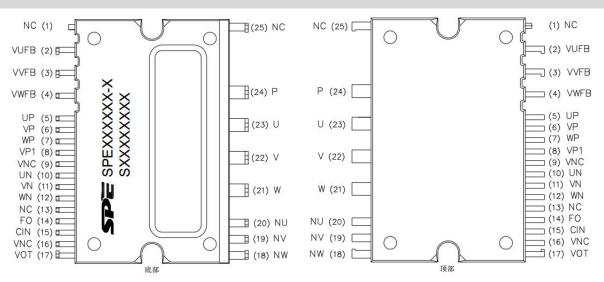


图 2: 管脚图

管脚编号	管脚名称	管脚描述
1	NC	无连接
2	VUFB	U相上臂驱动电源端子
3	VVFB	V相上臂驱动电源端子
4	VWFB	W相上臂驱动电源端子
5	UP	U相上臂控制信号输入端子
6	VP	V相上臂控制信号输入端子
7	WP	W相上臂控制信号输入端子
8	VP1	控制电源端子
9	VNC	控制电源 GND 端子
10	UN	U相下臂控制信号输入端子
11	VN	V相下臂控制信号输入端子
12	WN	W相下臂控制信号输入端子
13	NC	无连接
14	FO	故障输出端子
15	CIN	短路保护触发电压检测端子
16	VNC	控制电源 GND 端子
17	VOT	温度检测输出端子
18	NW	W 相下臂 IGBT 发射极端子
19	NV	V 相下臂 IGBT 发射极端子
20	NU	U 相下臂 IGBT 发射极端子
21	W	W 相输出端子
22	V	V 相输出端子
23	U	U 相输出端子
24	Р	逆变器直流输入端子
25	NC	无连接

最大额定值 (Tj= 25℃,除非特殊说明)

逆变部分

记号	项目	条件	额定值	单位
Vcc	电源电压	应用于 P- NU, NV, NW 之间	450	V
V _{CC(Surge)}	电源电压(含浪涌)	应用于 P- NU, NV, NW 之间	500	V
V _{CES}	集电极-发射极间电压		600	V
± I _C	集电极电流	T _C = 25°C (Tc 测试方法见图 3)	6	Α
± I _{CP}	集电极电流 (峰值)	T _C = 25°C, 脉冲宽度小于 1ms	12	Α
Pc	集电极功耗	T _C = 25°C, 单晶片	23	W
Tj	结温	(见备注 1)	-40~+150	°C

备注 1: IPM 功率晶片最大额定结温为 175°C(@表面温度 $T_C \le 100$ °C)。然而,为了确保 IPM 运行安全,结温应限定于 $T_J(av) \le 150$ °C (@表面温度 $T_C \le 100$ °C)。

控制部分

记号	项目	条件	额定值	单位
V_{DB}	上桥臂控制电源电压	应用于 UFB – U, VFB-V, WFB-W 之间	17.5	V
V_D	控制电源电压	应用于 VP1 – VNC 之间	17.5	V
V _{IN}	输入信号电压	应用于 UP, VP, WP, UN, VN, WN-VNC之间	-1~10	V
V_{FO}	故障输出电压	应用于 FO – V _{NC} 之间	-0.5~VD+0.5	V
I _{FO}	故障输出电流	FO 端子吸入电流值	1.5	mA
V _{SC}	电流检测端输入电压	应用于 CIN – V _{NC} 之间	-0.5~VD+0.5	V

全系统

记号	项目	条件	额定值	单位
V	电源电压自己保护范围(短路)	V _D = V _{DB} = 13.5 ~ 16.5V	400	V
V _{CC(PROT)}	电梯电压自压体扩视图(短路)	Tj= 150°C, 无重复, 时间小于 2us	400	V
Tc	模块正常工作壳体温度	-20°C≤Tj ≤150°C	-20 ~ +100	°C
Tstg	贮存温度		-40 ~ +125	°C
Viso	绝缘耐压	正弦波60Hz, AC 1分钟, 在插脚和散热片之间	2500	Vrms

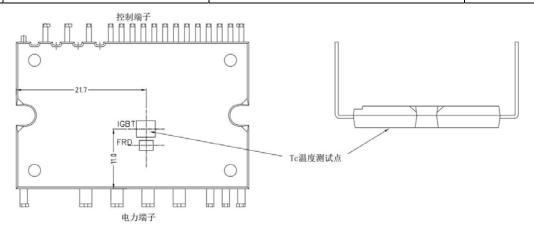


图 3: 壳温测试点

热阻

记号	项目	条件	最小值	典型值	最大值	单位
Rth(j-c)Q		单个 IGBT 元件	-	-	5.5	°C/W
Rth(j-c)F	结点到壳的热阻	单个 FRD 元件	-	-	6.2	°C/W

电气特性 (Tj= 25°C, 除非特殊说明)

逆变部分

记号	项目	条件	最小值	典型值	最大值	单位
		$V_D = V_{DB} = 15V$		1.95		V
W	集电极与发射极间饱和电压	$V_{IN} = 5V$, $I_{C} = 6A$, $Tj = 25$ °C		1.90	i	٧
$V_{CE(sat)}$	朱电恢	$V_D = V_{DB} = 15V$		2.35		V
		V _{IN} = 5V, IC =6A, Tj= 125°C		2.35	-	٧
V_{F}	FWD 正向导通电压	$V_{IN} = 0V$, $I_{C} = -6A$, $Tj = 25$ °C		1.6	2.0	>
t _{ON}			ı	0.62	ı	uS
t _{C(ON)}		$V_{CC} = 300V, V_D = V_{DB} = 15V$	-	0.13	1	uS
toff	开关时间(备注2)	I _C =6A	-	0.7	-	uS
t _{C(OFF)}		V _{IN} = 0V—5V, 感性负载	-	0.06	-	uS
t _{rr}			-	0.12	-	uS
E _{on}	开通损耗	$I_C = 6A$, $V_{CC} = 400V$, $V_D = V_{DB}$	-	42	92	1
E _{off}	关断损耗	= 15V,L=1mH,Tj= 25°C	-	90	142	uJ
	集中权到长射极泥中	V _{CE} = V _{CES} Tj= 25°C	-	-	75	uA
I _{CES}	集电极到发射极漏电流	V _{CE} = V _{CES} Tj= 125°C	-	-	1	mA

备注 $2: t_{ON}$ 和 t_{OFF} 包括驱动 I_C 内部传输延迟时间。 $t_{C(ON)}$ 和 $t_{C(OFF)}$ 是 IGBT 自身被内部给定门极驱动条件下的开关时间。详见图 4。

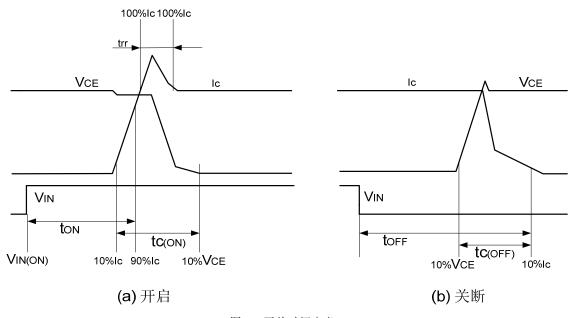


图 4: 开关时间定义

控制部分

记号	项目		条件	最小值	典型值	最大值	单位
Ι _D	V _D 静态电流	V _D = 15V V _{IN} = 5V	VP1-VNC	-	0.52	1	mA
I _{DB}	V _{DB} 静态电流	V _{DB} = 15V V _{IN} = 5V	UFB - U, VFB - V, WFB - W	-	360	550	uA
V_{FOH}	故障输出电压	Vsc = 0V, FO	即通过 10K 电阻上拉至	4.6	-	-	V
V _{FOL}		Vsc =1V, I _{FO} =1	.5mA	-	-	0.3	V
Vsc,TH+	短路正向触发阙值	V _D = 15V		0.37	0.47	0.65	٧
Vsc,TH-	短路负向触发阙值	V _D = 15V		0.2	0.4	-	V
UV _{DR}		复位电平		11.0	12.1	12.8	
UV _{DD}		触发电平		9.5	10.4	11.0	
UV _{DBR}	- 电源欠压保护控制	复位电平		11.0	12.1	12.8	V
UV_DBD		触发电平	触发电平		10.4	11.0	
Ron,FLT	故障低有效阻抗	I=1.5mA			50	90	ohm
T _{FO}	故障输出脉冲宽度			40	65	120	uS
t _{FIL,IN}	输入信号滤过时间 (UP/VP/WP, UN/VN/WN)	V _{IN} = 0 V & 5 V		140	290	-	nS
t _{CINMIN}	CIN 输入信号滤过时 间	V _{IN} = 0 V or 5 V	/,V _{CIN} = 5 V	270	530	780	nS
V _{IN(ON)}	开启阙值电压	应用于 UP,VP,	WP,UN,VN,WN 和 VNC	1.7	2.1	2.4	٧
V _{IN(OFF)}	关断阙值电压	之间		0.7	0.85	1.4	V
V _{OT}	温度输出,备注3	Tc=90°C		1.53	1.59	1.65	٧
v 01	血/又制山, 田任 3	Tc=25℃		4.15	4.17	4.19	V
V_{F}	BSD 正向电压	I _F =10mA 包含F	电压	-	1.0	1.3	V
R_{BSD}	BSD限流电阻	VF1=4V, VF2=	5V	22	36	50	ohm

备注3: 当温度达到极限时,IPM不能自动够关闭IGBT和输出故障信号。当温度超出使用者定义的限定值时,应使用控制器(单片机)关闭IPM。IPM的VoT输出特性曲线请参考图5,图5曲线是以20K上拉电阻测试结果。

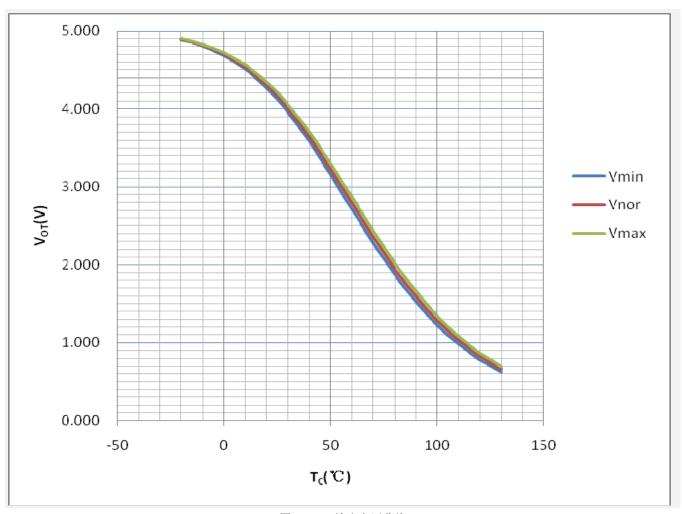


图5: Vor 输出电压曲线

推荐工作条件

27 F.	项目	ない		* C+		
记号		条件	最小值	典型值	最大值	单位
V _{cc}	电源电压	应用于 P-NU, NV, NW 之间	0	300	400	V
V_D	控制电源电压	应用于 VP1 – VNC 之间	-	15	-	V
V	上臂控制电源电压	应用于VUFB – U, VVFB – V,	-	15	-	V
V_{DS}		VWFB-W 之间				V
t _{dead}	死区时间	各桥臂输入对应, Tc<=100℃	1	-	-	us
f	PWM 频率	-20℃≪Tc ≪+100℃		-	20	kHz
f _{PWM}	PVVIVI	-20℃≤Tj≤+150℃	-		20	KI IZ
PWM	目上於入台口的社會內	ON	0.7	ı	1	us
F VVIVI	最小输入信号脉冲宽度	OFF	0.7	ı	-	us
Tj	结温		-20	-	125	$^{\circ}$

内部 NTC -热阻特性

记号	项目	条件		单位		
NT A			最小值	典型值	最大值	半 仏
0	热敏电阻	T _{NTC} = 25°C	97	100	103	Kohm
R _{NTC}	2次 40 円 円	T _{NTC} = 125°C	3.25	3.46	3.69	Kohm
温度范围			-40	-	+125	°C

机械特性

参数	条件		数值			
少 数	宋代	最小值	典型值	最大值	单位	
安装扭矩	螺丝钉尺寸: M3	-	0.69	-	N•m	
设计平面度	见图6	-50	-	+120	um	
重量		-	7	-	g	

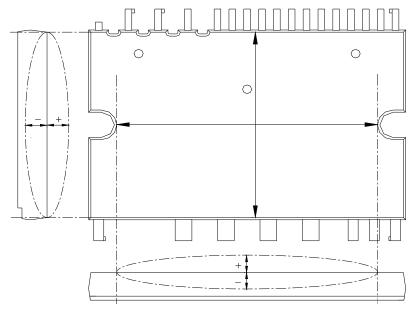
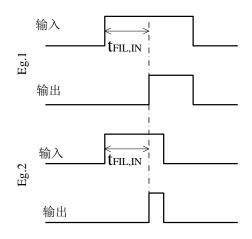



图 6: 平面度检测位置

应用指南

增强型输入滤波

增强型滤波器能够改善 HVIC 内部模块的输入/输出脉冲的一致性及有助于滤除尖峰干扰信号和窄脉冲,如下图 7 和图 8 是经典型输入滤波器和增强型输入滤波器演示图。

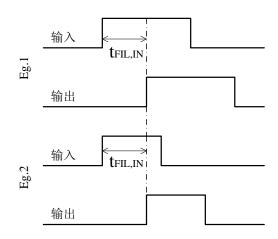
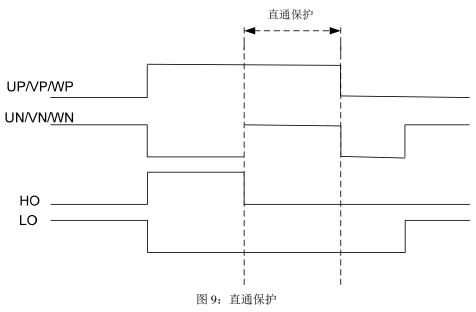



图 7: 典型输入滤波

图 8: 增强型输入滤波

保护功能时序图

备注4: HO 和 LO 为内部 HVIC门极输出信号。

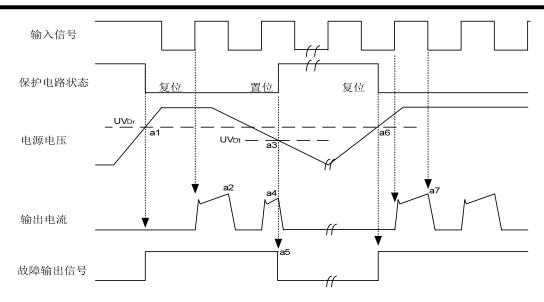
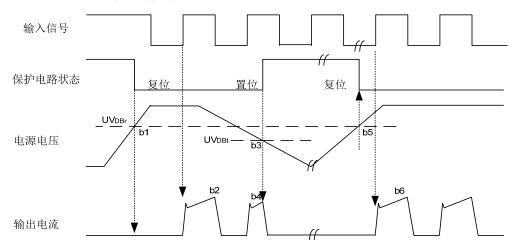


图10: 欠压保护时序图(低侧)

a1:电源电压上升: 当该电压上升到欠压恢复点,在下一个欠压信号被执行前该线路将启动运行。


a2:正常运行:IGBT 开启并加载电流。

a3: 欠压检测点(UV_{Dt})。

a4:不管输入是什么信号,IGBT都是关闭状态。。

a5:故障输出开启。 a6:欠压恢复(UV_{Dr})。

a7:正常运行: IGBT 导通并加载负载电流。

高电平(无故障信号输出) 故障输出信号

图11: 欠压保护时序图 (高侧)

b1:电源电压上升:当该电压上升到欠压恢复点,在下一个欠压信号被执行前该线路将启动运行。

b2:正常运行:IGBT导通并加载负载电流。

b3:欠压检测 (UV_{DBt})。

b4:不管输入是什么信号,IGBT都是关闭状态。

b5:欠压恢复(UV_{DBr})。

b6:正常运行:IGBT导通并加载负载电流。

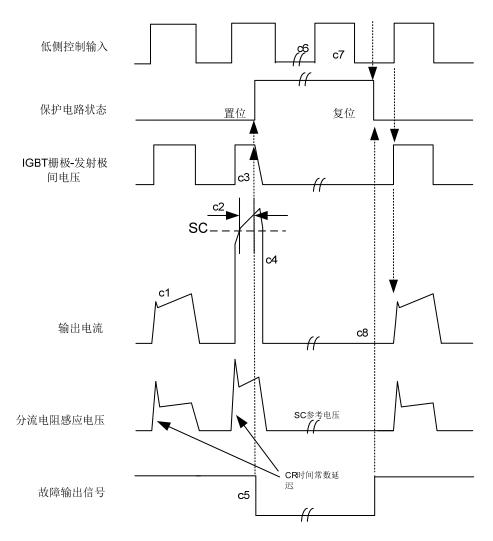


图 12: 短路电流保护时序图 (只适合于低侧)

(通过外部分流电阻连接)

c1:正常运行:IGBT 导通载流。

c2:短路电流检测(CIN 触发器)。

c3:IGBT 门极被强制关断.

c4:IGBT美断。

c5:故障输出定时器开始运行:故障输出信号的脉冲宽度是由外部电容CFO设定。

c6:输入"L":IGBT关闭。

c7:输入"H":IGBT 开通,但是故障信号作用期间, IGBT不导通。

c8:IGBT 美断。

输入/输出接口电路

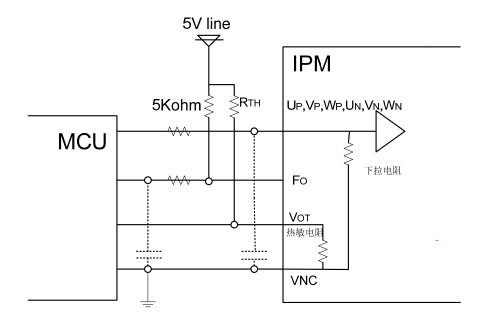
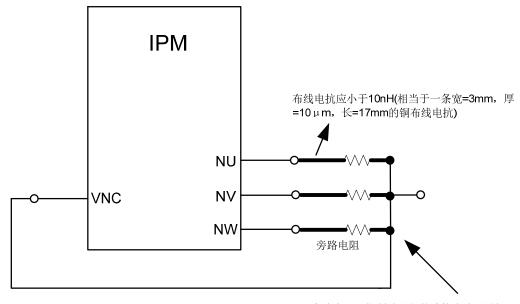



图 13: 推荐的 MCU 输入输出接口电路

备注5:由于PWM的控制方式和实际应用电路的阻抗及线路板的阻抗,RC去耦可能会有变化。

备注6:逻辑输入要和标准的CMOS或LSTTL输出相匹配。

分流电阻接线

旁路电阻和控制地之间的连接应该尽量短

图 14: 旁路电阻接线注意事项

典型应用电路图

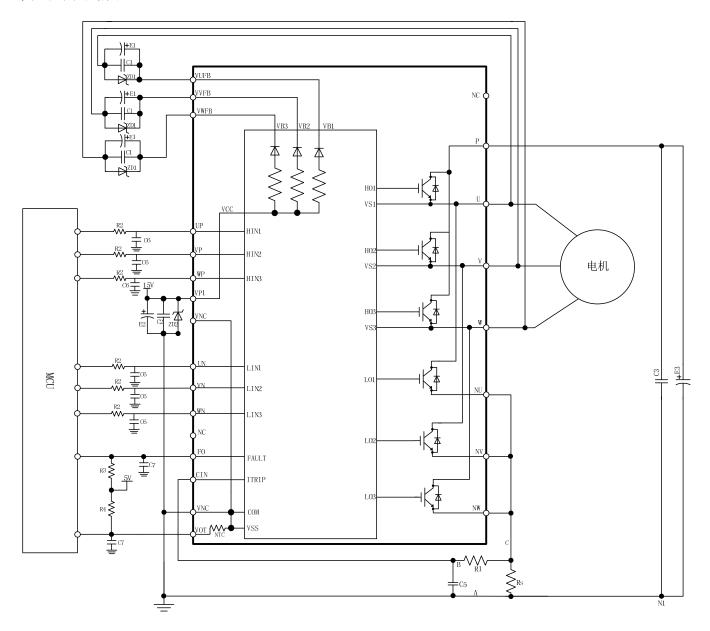


图 15: 典型应用电路

- 备注 7: 输入驱动高有效; IC 内部集成有一个 5kΩ(典型值)下拉电阻; 为防止发生误动作,输入布线应尽可能短; 当用 RC 去耦线路时,须确保输入信号达到开启和关断阙值电压范围。
- 备注8: 由于模块内置了专用HVIC,其控制端子可与CPU 端子直接相连,而不需要任何光耦或变压器等隔离电路。
- 备注9: 自举电路负极应直接连接到U、V、W的端。
- 备注10: FO是漏极开路型,其信号线应通过一个约10k Ω 的上拉电阻上拉到+5V/3.3V电源。
- 备注11: 为防止误保护, A、B、C连线应尽可能短。
- 备注12:保护线路R1、C5的时间常数建议选取在1~2uS。关断时间可能随着布线的不同而多少有些变化。建议R1、C5选择小容差,温度补偿类型。
- 备注13: 所有电容的位置尽可能的靠近IPM。
- 备注14: 为了防止噪声干扰,储能电容与P&N1之间的引线应尽可能的短,推荐在P&N1端子之间加约0.1~0.22uF的MLCC低频滤波电容。
- 备注15:两个VNC端(9&16脚)在IPM内部已连接在一起,外部任一VNC端子连接到GND,另一端子允许开路。
- 备注16:如果控制地通过PCB走线被连接到功率地,控制信号可能会受到功率地的起伏的影响,推荐使用单点连接。

外形封装图

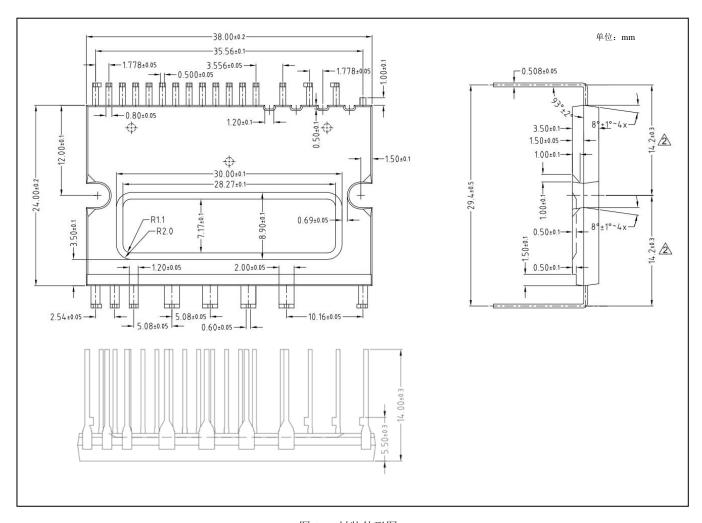


图 16: 封装外形图